SimBRS WD 43

Fleet Maintenance Simulation for Unmanned Ground Vehicles

Zissimos P. Mourelatos

Mechanical Engineering Department Oakland University

Matthew P. Castanier, David A. Lamb US Army TARDEC

SimBRS Program Review Meeting | 26-28 July 2011 | Starkville, MS

maintaining the data needed, and c including suggestions for reducing	ection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding and MB control number.	tion of information. Send comment arters Services, Directorate for Inf	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 26 JUL 2011		2. REPORT TYPE Briefing Charts		3. DATES COVE 26-07-201	ERED 1 to 26-07-2011	
4. TITLE AND SUBTITLE		,		5a. CONTRACT	NUMBER	
FLEET MAINTENANCE SIMULATION FOR UNMANNED G VEHICLES			NED GROUND	5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	UMBER	
Matt Castanier; David Lamb; Zissimos Mourelatos				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AI y, Mechanical Engin ster,MI,48309	` '		8. PERFORMING REPORT NUMB ; #22120	G ORGANIZATION EER	
	RING AGENCY NAME(S) A	` '	3397-5000	10. SPONSOR/M	IONITOR'S ACRONYM(S)	
				11. SPONSOR/M NUMBER(S) #22120	IONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT	ion unlimited				
13. SUPPLEMENTARY NO SimBRS Program	TES Review Meeting 26-	28 July 2011 Stark	ville, MS			
14. ABSTRACT NA						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	40	RESPUNSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

- ➤ What is reliability?
- > Basics of reliability methods for repairable and nonrepairable systems
- ➤ Estimation of PDF of Time Between Failures (TBF) using limited, censored data
- > System reliability and reliability allocation
- > Fleet Maintenance Simulation (FMS) Tool
- > Unmanned ground vehicle (UGV) system example

What is Reliability?

Reliability at time t is the probability that the system has not failed before time t.

$$R(t) = P(T > t) = 1 - P(T \le t)$$

Reliability of Non-Repairable Systems

$$R(t) = P(T > t) = 1 - P(T \le t) \Longrightarrow R(t) = 1 - F(t)$$
 (1)

$$\lambda(t) = \frac{P(t < T \le t + dt/T > t)}{dt} = \frac{P(t < T \le t + dt)}{dt * P(T > t)} = \frac{P(t < T \le t + dt)}{dt * P(T > t)} = \frac{F(t + dt) - F(t)}{dt * R(t)} \Rightarrow \lambda(t) = \frac{f(t)}{R(t)}$$
(2)

From (1) and (2) we get:

$$R(t) = \exp\left[-\int_{0}^{t} \lambda dt\right]$$

Reliability of Non-Repairable Systems

$$\lambda_{i} = \frac{f_{i}}{1 - F_{i}} = \frac{f_{i}}{1 - \sum_{j=1}^{i-1} \frac{N_{f_{j}}}{N_{f}}} = \frac{N_{f_{i}}}{\left(N_{f} - \sum_{j=1}^{i-1} N_{f_{j}}\right) \Delta t}$$

$$H_i = \sum_{j=1}^l \lambda_j \Delta t$$

$$R_i = e^{-H_i}$$

Reliability Calculation

All we need for calculating the reliability of a system (non-repairable or repairable) is the system PDF of time to failure (TTF)

We use:

- > Data to estimate the PDF of TTF for each component
- ➤ Monte Carlo simulation to estimate the PDF of TTF for the system

Estimation of the PDF of the TTF (TBF) using Limited, Censored Data

Censored MLE Approach

Observation / Assumption

$$dM_i = X_i \sim \beta(A, B, p, q), \quad (A \le X_i \le B, \text{ and } p > 0, q > 0)$$

$$f(x,A,B,p,q)=\beta(p,q)^{-1}(x-A)^{p-1}(B-x)^{q-1}/(B-A)^{p+q-1}, (A \le x \le B, and p > 0, q > 0)$$

$$A = 0$$
 $B = 45,000 \text{ miles}$
 $p = 3, q = 5$

Observation / Assumption

Beta distribution family is used to model TBF.

$$A=0, B=30000$$

$$f(x, A, B, p, q) = \beta(p, q)^{-1}(x - A)^{p-1}(B - x)^{q-1}/(B - A)^{p+q-1}$$
, $(A \le x \le B, \text{ and } p > 0, q > 0)$

MLE Approach

Determines parameters (A, B, p, q) of "most likely" Beta distribution using available data.

Censored MLE

of recorded failures # of survivals
$$Max \\ A,B,p,q \prod_{i=1}^{N_F} f(x_i,A,B,p,q) \prod_{j=1}^{N_s} \left[1 - F(x_j,A,B,p,q)\right]$$
 Beta PDF Beta CDF

If Only MTBF is Available

$$f(x,A,B,p,q)=\beta(p,q)^{-1}(x-A)^{p-1}(B-x)^{q-1}/(B-A)^{p+q-1}$$
, $(A \le x \le B, and p > 0, q > 0)$

$$\mu = MTBF$$

Assume constant COV

Then for:

$$\overline{\mu} = \frac{\mu - A}{B - A}$$
 and $\overline{\sigma} = \frac{\sigma}{B - A}$

We get:

$$p = \overline{\mu} \left(\frac{\overline{\mu} (1 - \overline{\mu})}{\overline{\sigma}^2} - 1 \right),$$

$$q = \left(1 - \overline{\mu} \right) \left(\frac{\overline{\mu} (1 - \overline{\mu})}{\overline{\sigma}^2} - 1 \right)$$

System Reliability and Reliability Allocation

Reliability Allocation

Specify system (vehicle) reliability

Optimization

Determine required reliability of EACH component

9

This optimization problem DOES NOT have a unique solution

Reliability Allocation

One way to get a unique solution is to trade-off reliability and associated cost

 $\min_{\underline{R}_{comp}} Cost$

Target system , reliability

s. t. System Re liability = R^{t}

By varying R^t , we get the so called "Pareto Frontier."

Reliability vs Risk of Failure (Cost)

We want to maximize Reliability and simultaneously minimize Risk of failure (cost)

Reliability – Cost Pareto Front Calculation

Reliability-Cost Relation

$$cost = cost_0 e^{k(MTBF/MTBF_0-1)}$$
: For each component

$$Cost = \sum_{i_{C}=1}^{N_{C}} \left[cost_{0} e^{k(MTBF/MTBF_{0}-1)} (1 + failure counts) \right]_{i_{C}}$$

For system with Nc components

Input Information

Component Number Comp No.	Baseline MTBF in hours (MTBF ₀)	Coefficient of Variation	$oldsymbol{B}_{factor}$	Baseline cost (Cost ₀)	k
1	4076	0.3	3	\$27,500.00	1
2	15000	0.3	3	\$7,000.00	1
3	26510	0.3	3	\$3,000.00	1
4	40000	0.3	3	\$5,000.00	1
5	18000	0.3	3	\$5,000.00	1
6	8000	0.3	3	\$500.00	1
7	31809	0.3	3	\$22,500.00	1
8	9520	0.3	3	\$30,000.00	1
9	9713	0.3	3	\$12,500.00	1
10	2330	0.3	3	\$20,000.00	1
11	40000	0.3	3	\$27,500.00	1
12	8614	0.3	3	\$1,000.00	1
13	45000	0.3	3	\$30,000.00	1
14	20000	0.3	3	\$3,000.00	1
15	25000	0.3	3	\$15,000.00	1

Histogram of System Failures

Reliability Comparison between Repairable and Non-repairable System

Summary: Methodology

- > A methodology was presented to:
 - Calculate system reliability using limited data
 - Perform reliability allocation (determine reliabilities of components) using optimal trade-off between reliability and cost
- > The methodology was demonstrated with a fifteen-component vehicle system

Fleet Maintenance Simulation (FMS) Tool

Simulation and Optimization - FMS Tool

- Developed jointly by TARDEC (CASSI Analytics) and Oakland University
- Predicts vehicle maintenance over lifecycle based on component input data
- Enables reliability-cost trade/sensitivity/optimization studies for vehicle fleets

Analysis Procedure

- 1.Estimate component probability of failure vs time or mileage
- Focus on cost and repair drivers
- Minimum data: mean time between failure (MTBF)
- 2.Run Monte Carlo simulations to predict fleet reliability, availability, cost
 - Vehicle lifetime: user-specified
 - Number of simulated vehicles: user-specified
- 3.Perform trade/sensitivity/optimization studies
 - Tradeoffs among configurations, component changes, maintenance schedules, etc.
 - Sensitivity to data uncertainty, price changes, etc.
 - Optimization of components, schedules, etc.

Estimation of Component Reliability

- Beta distribution family is used to model probability of component failure versus time or mileage
- When maintenance records are available:
 - FMS Tool processes raw data
- For limited, censored data FMS
 Tool has two options to estimate
 the distribution
 - Censored Maximum Likelihood Estimation (MLE)
 - Bayesian updating approach ("enhances" data with expert opinion)

Example: Unmanned Ground Vehicle (UGV)

- Focus on robotic arm design
- For original design, each joint and the end effector has:
 - 1 motor
 - 1 optical encoder (sensor)
- Perform trade study for adding secondary sensors, motors
- Use reliability @ 1000 hours of operation as input data
 - Motor: R(1000) = 0.969
 - Sensor: R(1000) = 0.814

Reliability of UGV Arm – Original Design

$$R_s = (0.969 \times 0.814)^4 = 0.387$$

Reliability for One Design Configuration with Redundant Components

$$R_s = \underbrace{\{0.969 \times \left[1 - (1 - 0.814)^2\right]^3\}}_{\text{for joints } 1, 3, \text{ and } 4} \underbrace{\left\{1 - (1 - 0.75)^2\right] \times \left[1 - (1 - 0.814)^2\right]}_{\text{for joint } 2} = 0.741$$

robot fails

Fault Tree with Redundant Components

Reliability vs. Cost Trade Study

- Redundant components provide higher system reliability, but...
 - At what cost?
 - Is it worth it?
- Use FMS Tool to
 - Perform trade study
 - Find Pareto frontier

Fault Tree Model in FMS Tool

FMS Tool Results: Original Design

Simulation results yield system reliability R=0.75 @ t=1000 hours

Close to theoretical value of 0.741

Total failure Cnts	R _{sys sim}	Total Cost
0.262249999	0.75	\$995.27
failure Cnts	Unit Cost	Sub Total Cost
0.0272500	\$150.00	\$154.09
0.0142500	\$50.00	\$50.71
0.0157500	\$50.00	\$50.79
0.0220000	\$61.62	\$62.98
0.0287500	\$61.62	\$63.39
0.0172500	\$50.00	\$50.86
0.0162500	\$50.00	\$50.81
0.0265000	\$150.00	\$153.98
0.0147500	\$50.00	\$50.74
0.0180000	\$50.00	\$50.90
0.0295000	\$150.00	\$154.43
0.0165000	\$50.00	\$50.83
0.0155000	\$50.00	\$50.78

System reliability and cost @ 1000 hours of operation

\$995

Component Alternatives

Component Input Data					
Comp. No	MTBF₀	Cov	B _{factor}	Unit Cost₀	k
1	31519	0.98	26.09	\$150.00	1
-2	4845	0.77	2.8228	\$50.00	1
-3	4845	0.77	2.8228	\$50.00	1
4	3476.616	0.98	26.09	\$61.62	1
5	3476.616	0.98	26.09	\$61.62	1
-6	4845	0.77	2.8228	\$50.00	1
-7	4845	0.77	2.8228	\$50.00	1
8	31519	0.98	26.09	\$150.00	1
-9	4845	0.77	2.8228	\$50.00	1
-10	4845	0.77	2.8228	\$50.00	1
11	31519	0.98	26.09	\$150.00	1
-12	4845	0.77	2.8228	\$50.00	1
-13	4845	0.77	2.8228	\$50.00	1

Component Input Data

Negative numbers: components that do not have alternatives

FMS Tool Results: Trade Study

Reliability-cost Pareto set @ 1000 hours of operation

UNCLASSIFIED: Dist A. Approved for public release

Recent and Ongoing Work

Adding system and fleet attributes

- Weight, fuel efficiency/cost
- Availability

Enhancing underlying models

- Different types of failure modes, more probability distributions
- Scheduled maintenance, preventive maintenance

• Implementing state-of-the-art multi-objective optimizer

- Non-dominated sorting genetic algorithm II (NGSA-II)
- Multiple objectives beyond cost and reliability

Converting software framework from Excel to MATLAB

- Improve computational performance
- Leverage MATLAB toolkits
- Foster collaborative development (TARDEC, OU, SMART Students)

Summary: FMS Tool

- Fleet Maintenance Simulation (FMS) Tool has been developed to perform trade/sensitivity/optimization studies
- FMS Tool applied to example UGV trade study for validation and demonstration purposes
- Software is under active development by TARDEC and OU to enhance capabilities and improve efficiency

